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VI. CONCLUSION

The behavior of TM modes in plane metallic waveguides are

quite different according to the frequency range.

For the lower frequencies, these modes are similar to those of

the usual metallic waveguides. The TEMmodebecomes TMO or

a quasi-TEM mode. The other modes keep their properties, In

particular, the attenuation varies like the square root of the

frequency and the inverse of the dimension.

For higher frequency, the behavior of the modes are more

unexpected. The TMO and TMl modes become very attenuated

(the attenuation varies like W2). To the contrary, the other modes

are far less attenuated (the attenuation varies like u– 5/2 and

a-3 ). This can be explained by the existence of central densities

of energy, which only remain when the frequency increases. For

TMO and TMI modes, this central density does not exist and

these modes can’t propagate any more for higher frequencies.

Our results can be used for the mixed rectangular metallic and

dielectric waveguides [1], where quasi-LSE or quasi-LSM modes

can be considered TE or TM modes with regard to the dielectric,

and TM or TE modes with regard to the metal. The increase of

the attenuation with the frequency for some low-order modes

explains the poor Q coefficient for metallic cavities with respect

to dielectric cavities. The same results can be obtained for cir-

cular metallic waveguides. Asymptotic expressions can be easily

carried out.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

WFERENCES ,

M. R. Schubert, M. S. Durschalg, and T. A. DeTemple, “Diffraction

limited cw optically pumped laser,” [EEE Quantum Electron., vol. QE-13,
pp. 455–459, 1977.
J. J. Burke, “Propagating constants of resonant waves on homogeneous

isotropic slab waveguide,” Appl. Opt, vol. 9, pp. 2444-2452, 1970.

D. Paaquet, “Accurate graphic resolution of the characteristic equation

of a hollow dielectric slab waveguide,” Int. J. Infrared Millimeter Waves,
vol. 2, pp. 453–463, 1981.
J. R. Wait and K. P. Spies, Pure Appl. Geophys, vol. 102, pp. 174-188,

1972.

J. N. Polky and G. L. Mitchell, “Metal clad planar dielectric waveguide

for integrated optics,” J. Opt. Sot. Amer., vol. 64, pp. 274-279, 1974.

K. G. Budden and M. Eve, “Degenerate modes in the Earth-Ionosphere

waveguide,” Proc. Roy. Sot, London, vol. A342, pp. 175-190, 1975.

Y. N. Lazarenko, V. F. Pavlov, snd V. D. Sskhatskiey, “On some

properties of surface waves in 10SSY media,” Radio Eng. Electron. Phys.,
vol. 21, pp. 118-120, 1976.
B. Adam and F. Kneubiihl, “Transversely excited 337-pm HCN wave-

guide laser,” App[. Phvs., vol. 8, pp. 282-295, 1975.

E. A. J, Marcatili and R. A. Schmeltzer, “Hollow metrdlic and dielectric

waveguides for long distance optical transmission and laser,” Bel[ Syst.

Tech. J., vol. 43, pp. 1783-1809, 1964.

D. Pasquet, “ Waveguide discrete modes in slab and cylindrical FIR

laser,” Int. J. Infrared Millimeter Waues, vol. 2, pp. 1151-1163, 1981.

Response of Waveguides Terminated in a Tapered

Metallic Wall
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Abstract —The characteristics of wavegoides terminated in a tapered

metallic wall are anafyzed by means of the modal analysis and scattering

matrix concept of diaeontinuities. Several applications of this kind of
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Fig. 1. Rectangular waveguides terminated in tapered metallic wall. (a) Type.

“a” short circuit, slope a. (b) Type-” b“ short circuit, slope ~.

Fig. 2. Step-ladder modeling type-”a” and type-<’ b“ short circuits, respec-

tively.

termination are suggested. The results can be very useful in evaluating the

phase errors produced due to the use of a short-circuited wavegtside with a

metallic wall not placed in an exact transverse plane (z = constant).

I. INTRODUCTION

The classical way of terminating a waveguide with a metallic
wall, to obtain a short circuit, is to place it in a transverse plane
of the waveguide (plane z = constant). Different modes of the
incident field are not generated by this termination, and the
behavior of this short-circuited waveguide is well known.

However, the metallic wall can be placed, by error or by
necessity, in an oblique plane.

In this paper, the effects of this kind of short circuit are
studied. Two different terminations considered here are il-
lustrated in Fig. l(a) and (b).

II. THE MODEL AND ANALYSIS METHOD

The geometry presented in Fig. 1 can be modeled by means of

a step-ladder as it is shown in Fig. 2. As the steps get smaller in

the limit, this model simulates properly the tapered metallic wall.

The geometries illustrated in Fig. 2 show N different wave-

guide sections of A z length, terminated in a classical short circuit

with metallic wall in a transverse plane.

These configurations can be exactly analyzed by means of a

new technique combining the model analysis and scattering ma-

trix concept of transverse discontinuities [1]–[3]. The electromag-

netic field in each waveguide section is assumed to be the sum of

their eigenmodes. Then the scattering matrix S of each discon-

tinuity is obtained [3]. Finally, all discontinuities are joined in

order to obtain the exact response of the complete structure by a

method similar to that proposed by Patzelt and Arndt [3]. This

method permits the combination of as many discontinuities as

desired. The number of modes used to describe the electromag-

netic field in each wavegnide section can be as large as permitted

by the computer. However, convergence is quickly obtained and

20 modes are enough to solve the problem.

The exciting field from the left is considered to consist of the

fundamental TEIO mode of the rectangular waveguide. With this

incident field, and considering the step discontinuities of the “ a“

and “ b“ cases, the next modes are considered.
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TABLE I

COMPARISONBETWEENNUMERJCALRESULTSOBTAINED BY

CAMPBELLAND JONES [4] AND THIS METHOD

I 1 , I

I Kg B I Ya,[43 I ‘+a(this method)

Kg: guide wavenumber

A. Termination Tapered in Height of Waveguide, Type -“a” Short

Circuit (Fig. l.(a))

Only discontinuities between rectangukw waveguides with dif-

ferent heights exist; therefore, only the TE~, ~ family of modes is

considered. Other authors consider both TEf ,, and TM~ , to

solve these kinds of discontinuities. The resu’lts obtained’ ~ith

both family of modes are the same.

B. Termination Tapered m Width, Tvpe-”b” Short Circuit (Fig.

l(b))

In this case, discontinuities between rectangular waveguides

with different widths are considered: only the TE;, ~ family of

modes are excited.

III. NUMERICAL RESULTS

First, the influence of the number of steps N on the phase of

the reflection coefficient is studied. In Fig. 3, the phase of the

reflection coefficient ( rpo and Y*) is shown versus the number of
steps. In the cases presented, the slopes are a = 45° and /3 = 45°.

The dimensions of the input waveguide are A x B = 22.86x 10.16

mm, and the frequency is 10 GHz.

As can be seen in this figure, when the number of steps is

increased, the phase of reflection coefficient shows a good

asymptotic behavior of short circuits “ a“ and “b.”

The case of a type-” a“ short circuit with a = 45° has been

dealt with as a special case of a truncated right-angle E-plane

corner by Campbell and Jones [4]. In Table I, results from [4] and

the ones obtained by this method are presented. A very good

agreement can be observed between both methods.

The modulus of the reflection coefficient obtained in all cases

of short-circuit type “ a“ is unity at the frequency band 7–14
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Fig, 4. Reflection coefficient phase of type-” a“ short-circuit (Pa) for differ-

ent slopes (—- ), and for classicrd short circuits a = 90° at distauce 1 from

the metallic wall (-- -- ).

GHz. This is due to the fact that the all modes generated (TE~,,,,

n > 1) are evanescent modes in this frequency band. However, in

short-circuit type “b,” the modulus of the reflection coefficient is

less than 1 when the TE~,O is propagating. For example, p~~,, =

G

0.911 – 177.8° at 14 GHz for/?= 45°.

The p ase response (T. and qJfi) at the frequency band 7-14

GHz for different slopes (a, /3) of the short circuit are shown in

Figs. 4 and 5 (dimensions of the input waveguide are A x B =

22.86 X10.16 mm).

The typical response of a short circuit (a= 90°) at distances

f (1 = 6 mm and 1=10.16 mm) from the terminal metallic wall

can be seen in Fig. 4. From this plot, it can be seen that the phase

lines of a = 90°, 1= 6 mm, and a = 50° have different slopes.

Using this property, a circuit composed of a waveguide section

plus a short circuit with slope a can give a linear phase response

over the entire frequency band of the waveguide. An example is

shown in Fig. 6. It can be seen that the phase line of the

combination of the type-” a” short circuit (a = 50°) and a wave-

guide section of length 6 mm is nearly a linear function of

frequency. Also presented in Fig. 6 is the phase line of a wave-

guide section of length 11 mm terminated in a classical short

circuit (a= 900). A nonlinear dependence with the frequency can

be observed due to dispersion of the propagation constant.

The response of the type-” b“ short circuit is quite different

from the type “a.” This different behavior can be explained

taking into account that the fundamental mode TEIO is never

under its cuttoff frequency in the type-” a“ short circuit. How-
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Fig. 7. Normalized input admittance of wavegmde sections (length 1) plus

short-circuit type “a” (slope a). u: a = 90°, f = 9.939 mm. b: a = 45°,
[ = 3 810mm. c: a = 40°, 1= 2.200 mm.

ever, in type “bj’ the dominant mode is an evanescent field in
the final part of the tapered waveguide.

The plots shown in Figs. 4 and 5 give an idea of the phase error
due to art incorrect construction of a typical short circuit (a=

900). It can be seen that an error of one degree in the type-c’b”

short circuit (~ = 89°) causes the phase to become 175.10 at

~= 10 GI-Iz instead of the expected 180°.

These waveguides terminated in a tapered metallic wall can be

used for filter designs. If a Xg /4 stub terminated in a short

circuit (a= 90°) is considered, the input admittance at the de-

signed frequency is zero. The normalized input admittance of this

stub is presented in Fig. 7 (case a). The normalized input
admittance of two different combinations of the waveguide sec-
tion plus the slope shortcircuit are also shown. Note that the
slope of the admittance dY/dti is greater in these two last cases.
This behavior is useful in obtaining filters with higher Q.

IV. CONCLUSIONS

Waveguides terminated in a tapered metallic wall have been

analyzed. The proposed model and the employed method to solve

the problem have been shown to be very efficient.

The obtained results show the possibility of employing these

terminations to achieve a linear phase response, avoiding the

dispersion of the propagation constant, Another application may

be the design of filters with higher Q.

The results presented are useful to evaluate phase measurement

errors due to incorrect construction of short circuits.
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A Method for the Calculation of Exact Capacitances

of Circular Rod Arrays

SHIMON CASPI

Abstract —An exact solntion of the capacitance matrix of circular rods

located inside a grounded rectangle is presented. ,The capacitances were

determined by solving the integral eqnation for the charge densities on the

conductors using the Green function. The results are compared to E. G.

Cristal’s [1] data. Examples of the computing capacitance matrix for some

unsymmetrical configurations are given.

I. INTRODUCTION

Using circular rods in building microwave components (filters,

couplers) is very popular because of its manufacturing advantage

as compared to rectangular bars. The capacitances of rods as a

function of geometrical dimensions were calculated by E. G.

Cristaf [1]. He solved the problem for the important and particu-

lar case where the rods are located on the axis of symmetry

between ground planes, using the following assumptions: 1)

Coupling beyond nearest neighbors is negligible, 2) A moderate

change in the size or spacing of a given rod has only a second-order

effect on the charge distribution on the far side of adjacent rods.

The purpose of the present paper is to solve the above problem

generally, i.e., for any configuration of the rods between ground

planes and without usage of Cristal’s assumptions.

II. METHOD

The method used to determine the capacitance matrix is by

solving an integraf equation for the charge densities on the

conductors, and using the Green’s function as a Kernel [2], [3].

The form of the Green’s function used is the one suggested by

Chestnut [3], which is convenient for numerical work and takes
into account the effect of finrte side walls.

The difficulty in solving the integral equation is the logarithmic

singularity point in the Green’s function. It is necessq to solve a

limit problem N times for every rod (N —number of points in

the numerical net).

Manuscript received March 1, 1985; revised August 13, 1985

F’lg. 1. A system of n conductors

In the present paper, we solve the limit problem analytically,

enabling us to obtain an integral equation that is as simple as an

ordinary integral equation.

A. The Integral Equation

Following Chestnut [3], we define the problem: Let ~j(t) be

the function satisfying the following boundary value problem:

Vz@J(t)=Oin R,

~j( t) =1 on conductor ~,

@j(t) = O on conductor s,, i #j,

OJ( t) = O on the boundary of the rectangle,

where t is a point (.x, y) in region R, R is the region interior to

ground planes, and S, is the surface of conductor i (see Fig. 1).

Using the concept of the Green’s function, we get

where ~ is +j ( ~) on the surface S,, G is the Green’s function,

and Q, is ~+j/ d n, the charge density on the conductors.

This is a set of n equations for n unknown functions. Solving

it will give the capacitance matrix by C, j = c /3~,QJ ( t) dS.

B. The Numerical Solution

By the Gaussian quadrature formula, the integral equation is

reduced to a matrix equation [3]

(’qG(t,,f,), i#j

2!7
t,=x, +n, 6.),= 2~N’(z)2

(1-~)

and P~ is thewhere X, is zeros of the Legendre polynomial

Legendre polynomial

E,=~2nlnlt,-ildr= 2nln(r) (onacircularrod)

(D, = lim G(t,, t)+ ~lnlt, – t\
r+tz )

and the capacitance will be
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