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VI. CoNCLUSION

The behavior of TM modes in plane metallic waveguides are
quite different according to the frequency range.

For the lower frequencies, these modes are similar to those of
the usual metallic waveguides. The TEM mode becomes TM,, or
a quasi-TEM mode. The other modes keep their properties. In
particular, the attenuation varies like the square root of the
frequency and the inverse of the dimension.

For higher frequency, the behavior of the modes are more
unexpected. The TM, and TM; modes become very attenuated
(the attenuation varies like w?). To the contrary, the other modes
are far less attenuated (the attenuation varies like w3 and
a™?). This can be explained by the existence of central densities
of energy, which only remain when the frequency increases. For
TM, and TM; modes, this central density does not exist and
these modes can’t propagate any more for higher frequencies.

Our results can be used for the mixed rectangular metallic and

dielectric waveguides [1], where quasi-LSE or quasi-LSM modes

can be considered TE or TM modes with regard to the dielectric,

and TM or TE modes with regard to the metal. The increase of
the attenuation with the frequency for some low-order modes
explains the poor Q coefficient for metallic cavities with respect
to diclectric cavities. The same results can be obtained for cir-
cular metallic waveguides. Asymptotic expressions can be easily
carried out.
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Response of Waveguides Terminated in a Tapered
Metallic Wall

J.M. REBOLLAR

Abstract —The characteristics of waveguides terminated in a tapered
metallic wall are analyzed by means of the modal analysis and scattering
matrix concept of discontinuities. Several applications of this kind of

Manuscript received May 17, 1985; revised August 6, 1985.

The author is with the Departamento de Teoria Electromagnetica, ETS.L
Telecommunication, Universidad Politecnica de Madrid, Ciudad Universitaria,
28040 Madrid, Spain.

IEEE Log Number 8405932.

A’ ST .
..... '7. PP A 4
/, ’
.
e Jo A
z
(@) ®)
Fig. 1.  Rectangular waveguides terminated in tapered metallic wall. (a) Type-
“a” short circuit, slope a. (b) Type-“b” short circuit, slope 8.
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Fig. 2. Step-ladder modeling type-“a” and type-“b” short circuits, respec-

tively.

termination are suggested. The results can be very useful in evaluating the -
phase errors produced due to thé use of a short-circuited waveguide with a
metallic wall not placed in an exact transverse plane (z = constant).

I. INTRODUCTION

The classical way of terminating a waveguide with a metallic
wall, to obtain a short circuit, is to place it in a transverse plane
of the waveguide (plane z = constant). Different modes of the
incident- field are not generated by this termination, and the
behavior of this short-circuited waveguide is well known.

However, the metallic wall can be placed, by error or by
necessity, in an oblique plane.

In this paper, the effects of this kind of short circuit are
studied. Two different terminations considered here are il-
lustrated in Fig. 1(a) and (b):

II. THE MODEL AND ANALYSIS METHOD

The geometry presented in Fig. 1 can be modeled by means of
a step-ladder as it is shown in Fig. 2. As-the steps get smaller in
the limit, this model simulates properly the tapered metallic wall.

The geometries illustrated in Fig. 2 show N different wave-
guide sections of Az length, terminated in a classical short circuit
with metallic wall in a transverse plane.

These configurations can be exactly analyzed by means of a
new technique combining the model analysis and scattering ma-
trix concept of transverse discontinuities [1]-[3]. The electromag-
netic field in each waveguide section is assumed to be the sum of
their -ecigenmodes. Then the scattering matrix § of each discon-
tinuity is obtained [3]. Finally, all discontinuities are joined in
order to obtain the exact response of the complete structure by a
method similar to that proposed by Patzelt and Arndt [3]. This
method permits the combination of as many discontinuities as
desired. The number of modes used to describe the electromag-
netic field in each waveguide section can be as large as permitted
by the computer. However, convergence is quickly obtained and
20 modes are enough to solve the problem. )

The exciting field from the left is considered to consist of the’

* fundamental TE,, mode of the rectangular waveguide. With this

3 ”

incident field, and considering the step discontinuities of the
and “b” cases, the next modes are considered.
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Fig. 3 Reflection coefficient phase of short circuits. type “a” (¢, —,

a = 45°), type “b” (¢,----, B = 45°) versus number of steps.

TABLE1
COMPARISON BETWEEN NUMERICAL RESULTS OBRTAINED BY
CAMPBELL AND JONES [4] AND THIS METHOD

K, B ¥, ,0e3 ¥_(this method)
0.27m 143° 1440
0.357w 112° 112°
0.5m 71° 72°

-
0.657% 13° 15.6°

K ,: guide wavenumber

A. Termination Tapered in Height of Waveguide, Type-“a” Short
Circuit (Fig. 1.(a}}

Only discontinuities between rectangular waveguides with dif-
ferent heights exist; therefore, only the TE{ , family of modes is
considered. Other authors consider both TE] , and TMj , to
solve these kinds of discontinuities. The results obtained with
both family of modes are the same.

B. Termination Tapered m Width, Type-“b” Short Circuit (Fig.
1(b))

In this case, discontinuities between rectangular waveguides
with different widths are considered: only the TE; , family of
modes are excited.

IIL.

First, the influence of the number of steps N on the phase of
the reflection coefficient is studied. In Fig. 3, the phase of the
reflection coefficient (¢, and ¢,) is shown versus the number of
steps. In the cases presented, the slopes are a« = 45° and B = 45°.
The dimensions of the input waveguide are 4 X B =22.86 X10.16
mm, and the frequency is 10 GHz.

As can be seen in this figure, when the number of steps is
increased, the phase of reflection coefficient shows a good
asymptotic behavior of short circuits “a” and “b.”

The case of a type-“a” short circuit with a=45° has been
dealt with as a special case of a truncated right-angle E-plane
corner by Campbell and Jones [4]. In Table I, results from {4} and
the ones obtained by this method are presented. A very good
agreement can be observed between both methods.

The modulus of the reflection coefficient obtained in all cases
of short-circuit type “a” is unity at the frequency band 7-14

NUMERICAL RESULTS
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Fig. 4. Reflection coefficient phase of type-“a” short-circuit (¢,) for differ-
ent slopes ( -y, and for classical short circuits a = 90° at distance / from
the metallic wall (----).

GHz. This is due to the fact that the all modes generated (TE{ ,
n > 1) are evanescent modes in this frequency band. However, in
short-circuit type “b,” the modulus of the reflection coefficient is
less than 1 when the TE ; is propagating. For example, prg =
0.911 / —177.8° at 14 GHz for B = 45°.

The phase response (¢, and g,) at the frequency band 7-14
GHz for different slopes (a, 8) of the short circuit are shown in
Figs. 4 and 5 (dimensions of the input waveguide are A X B =
22.86 X10.16 mm).

The typical response of a short circuit (a=90°) at distances
I(I=6 mm and /=10.16 mm) from the terminal metallic wall
can be seen in Fig. 4. From this plot, it can be seen that the phase
lines of a=90°, /=6 mm, and = 50° have different slopes.
Using this property, a circuit composed of a waveguide section
plus a short circuit with slope « can give a linear phase response
over the entire frequency band of the waveguide. An example is
shown in Fig. 6. It can be seen that the phase line of the
combination of the type-“a” short circuit (a = 50°) and a wave-
guide section of length 6 mm is nearly a linear function of
frequency. Also presented in Fig. 6 is the phase line of a wave-
guide section of length 11 mm terminated in a classical short
circuit (&= 90°). A nonlinear dependence with the frequency can
be observed due to dispersion of the propagation constant.

The response of the type-“b” short circuit is quite different
from the type “a.” This different behavior can be explained
taking into account that the fundamental mode TE,, is never
under its cuttoff frequency in the type-“a” short circuit. How-
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Fig. 5. Reflection coefficient phase () of type-“b” short circuits for differ-
ent slopes.

70
50

30

-0

-80
-100
-120

-140

S, 10. n 2. 13.

F(GHz)

Fig. 6. Reflection coefficient phase of the combination of type-“a” short
circuit (a=50°) and rectangular waveguide section (22.86X10.16 mm) of
6-mm length ( ), and classical short circuit a=90° at distance /=11
mm from the metallic wall (----).
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Fig. 7. Normalized input admittance of wavegmde sections (length /) plus
short-circuit type “a” (slope «). a: a=90° [=9.939 mm. b: a=45°
[=3810mm. c¢: a=40°, /=2200 mm.

ever, in type “b,” the dominant mode is an evanescent field in
the final part of the tapered waveguide.

The plots shown in Figs. 4 and 5 give an idea of the phase error
due to an incorrect construction of a typical short circuit (a =
90°). It can be seen that an error of one degree in the type-“b”
short circuit (8 =89°) causes the phase to become 175.1° at
f =10 GHz instead of the expected 180°.

These waveguides terminated in a tapered metallic wall can be
used for filter designs. If a A, /4 stub terminated in a short
circuit (a=90°) is considered, the input admittance at the de-
signed frequency is zero. The normalized input admittance of this
stub is presented in Fig. 7 (case a). The normalized input
admittance of two different combinations of the waveguide sec-
tion plus the slope shortcircuit are also shown. Note that the
slope of the admittance dY/dw is greater in these two last cases.
This behavior is useful in obtaining filters with higher Q.

IV. CONCLUSIONS

Waveguides terminated in a tapered metallic wall have been
analyzed. The proposed model and the employed method to solve
the problem have been shown to be very efficient.

The obtained results show the possibility of employing these
terminations to achieve a linear phase response, avoiding the
dispersion of the propagation constant. Another application may
be the design of filters with higher Q.

The results presented are useful to evaluate phase measurement
errors due to incorrect construction of short circuits.
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A Method for the Calculation of Exact Capacitances
of Circuiar Rod Arrays

SHIMON CASPI

Abstract —An exact solution of the capacitance matrix of circular rods
located inside a grounded rectangle is presented. The capacitances were
determined by solving the integral equation for the charge densities on the
conductors using the Green function. The results are compared to E. G.
Cristal’s [1] data. Examples of the computing capacitance matrix for some
unsymmetrical configurations are given.

I. INTRODUCTION

Using circular rods in building microwave components (filters,
couplers) is very popular because of its manufacturing advantage
as compared to rectangular bars. The capacitances of rods as a
function of geometrical dimensions were calculated by E. G.
Cristal {1]. He solved the problem for the important and particu-
lar case where the rods are located on the axis of symmetry
between ground planes, using the following assumptions: 1)
Coupling beyond nearest neighbors is negligible, 2) A moderate
change in the size or spacing of a given rod has only a second-order
effect on the charge distribution on the far side of adjacent rods.

The purpose of the present paper is to solve the above problem
generally, i.e., for any configuration of the rods between ground
planes and without usage of Cristal’s assumptions.

II. METHOD

The method used to determine the capacitance matrix is by
solving an integral equation for the charge densities on the
conductors, and using the Green’s function as a Kernel [2], [3].
The form of the Green’s function used is the one suggested by
Chestnut [3], which is convenient for numerical work and takes
into account the effect of finite side walls.

The difficulty in solving the integral equation is the logarithmic
singularity point in the Green’s function. It is necessary to solve a
limit problem N times for every rod (N —number of points in
the numerical net).
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A system of n conductors

In the present paper, we solve the limit problem analytically,
enabling us to obtain an integral equation that is as simple as an
ordinary integral equation.

A. The Integral Equation

Following Chestnut [3], we define the problem: Let ¢;(r) be
the function satisfying the following boundary value problem:

v3y(t)=0in R,
¢j(t) =1 on conductor S,
¢j(7) = 0 on conductor S,, i # j,
¢7(¢) = 0 on the boundary of the rectangle,
where ¢ is a point (x, y) in region R, R is the region interior to

ground planes, and S, is the surface of conductor i (see Fig. 1).
Using the concept of the Green’s function, we get

N
=Y [ G(1,7)Q,(r)ds
=179,
where V), is ¢j(7) on the surface S, G is the Green’s function,
and Q, is d¢;/dn, the charge density on the conductors.
This is a set of n equations for n unknown functions. Solving
it will give the capacitance matrix by C; = € fy5 Q,(#) dS.

B. The Numerical Solution

By the Gaussian quadrature formula, the integral equation is
reduced to a matrix equation [3]

BO=V
wG'(t,,j i#j
b = Ni i
=\ w,D, +— Z welnjt, —t|-—, 1=j
-1 2a
k#l
2 » (X)z
t,=x+m, o=—"-7—=PFPu(X
-x)""

where X, is zeros of the Legendre polynomial and P, is the

Legendre polynomial

E, =/2"1n|t, —1tldt=2nIn(r) (onacircular rod)
0

1
= lim (G(z,,t)+ Injz, —tl)

=

and the capacitance will be

Nl
C=¢) w-0(t,).
k=1
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